STATISTICAL ANALYSIS 101

Dr. Marla Kniewel
Nebraska Methodist College
OBJECTIVES

• Distinguish descriptive from inferential statistics

• Apply the decision path in determining statistical tests to use in data analysis

• Determine appropriate parametric or nonparametric statistical tests to use in data analysis
Research Purpose

Describe data
- Frequencies
- Percentages
- Means (SD)

Examine differences
- 2 Groups
 - Pre-test / Post-test
 - t-test
 - Mann-Whitney U test
 - Wilcoxon
 - Chi-Squared
 - > 2 Groups
 - ANOVA
 - ANCOVA
 - MANOVA
 - Pre-test / Post-test
 - RM-ANOVA

Examine relationships
- Correlation
 - Pearson's r
 - Spearman Rho
 - Kendall's Tau
 - Chi-Square

Predict relationships
- Regression Analysis
 - Linear Regression
 - Multiple regression
 - Logistic regression
<table>
<thead>
<tr>
<th>Nominal</th>
<th>Ordinal</th>
<th>Interval</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Gender</td>
<td>• Pain scale (0-10)</td>
<td>• Temperature</td>
<td>• Age</td>
</tr>
<tr>
<td>• Ethnicity</td>
<td>• Age groups (18-25, 26-35, etc.)</td>
<td>• IQ</td>
<td>• Height</td>
</tr>
<tr>
<td>• Marital status</td>
<td>• Grade (A, B, C, D, & F)</td>
<td>• SAT score</td>
<td>• Weight</td>
</tr>
<tr>
<td>• Zip code</td>
<td>• Satisfaction scale (poor, acceptable, good)</td>
<td>• Depression score</td>
<td>• BP</td>
</tr>
<tr>
<td>• Religious affiliation</td>
<td>• Performance scale (Below average, average,</td>
<td>• Time of day</td>
<td>• HR</td>
</tr>
<tr>
<td>• Medical diagnosis</td>
<td>above average)</td>
<td>• Dates (years)</td>
<td>• Years of experience</td>
</tr>
<tr>
<td>• Names of medications</td>
<td></td>
<td></td>
<td>• Time to complete a task</td>
</tr>
</tbody>
</table>
CATEGORIES OF STATISTICS

- **Descriptive Statistics**
 - Describe situations and events
 - Summary (numbers, percentages)
 - Central Tendency
 - Charts / Graphs

- **Inferential Statistics**
 - Allows conclusions about variables
 - Statistical tests are performed
 - Comparisons
 - Associations
 - Predictions
DESCRIPTIVE STATISTICS

- Describe, Summarize & Organize data
 - Frequency distributions
 - Graphs/Tables
- Measures of Central Tendency/Dispersion
 - Mean (M)
 - Standard deviation (SD)

Table 1: Socio-demographic characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>(n)</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>112</td>
<td>30.9</td>
</tr>
<tr>
<td>Male</td>
<td>251</td>
<td>69.1</td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>95</td>
<td>26.2</td>
</tr>
<tr>
<td>Married</td>
<td>268</td>
<td>73.8</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23–29</td>
<td>148</td>
<td>40.8</td>
</tr>
<tr>
<td>30–40</td>
<td>135</td>
<td>37.2</td>
</tr>
<tr>
<td>41–50</td>
<td>43</td>
<td>11.8</td>
</tr>
<tr>
<td>51 and over</td>
<td>37</td>
<td>10.2</td>
</tr>
<tr>
<td>Participation in sports activities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>One day in a week</td>
<td>75</td>
<td>20.6</td>
</tr>
<tr>
<td>Two-three days in a week</td>
<td>50</td>
<td>13.8</td>
</tr>
<tr>
<td>One day in two weeks</td>
<td>51</td>
<td>14.1</td>
</tr>
<tr>
<td>Never</td>
<td>187</td>
<td>51.5</td>
</tr>
</tbody>
</table>
DESCRIPTIVE STATISTICS

- Distribution of data
 - Normal distribution
- Skewness
 - Negative skew
 - Positive skew

Examples of normal and skewed distributions:

(a) Negatively skewed
(b) Normal (no skew)
(c) Positively skewed
INFERENTIAL STATISTICS

- Probability
 - Likelihood an outcome will occur
 - Helps identify risk
 - Confidence Interval (CI)

- Alpha level (α-level) or significance level
 - Defines statistical significance
 - Most common in healthcare: .05 and .01
 - \(p \)-value

- Examine relationships among variables
 - Correlation statistics
 - Predict relationships among variables
 - Regression analysis

- Examine / Compare differences between variables
 - \(t \)-test
 - ANOVA
PARAMETRIC VS NONPARAMETRIC

PARAMETRIC STATISTICAL TESTS

- Assumptions
 - Data must be normally distributed
 - Interval or ratio data
 - Independence of data
- Need sample size >30
- More powerful

NONPARAMETRIC STATISTICAL TESTS

- No assumptions of distribution
- Small sample size
- Level of measurement
 - Nominal or ordinal
WHAT STATISTICAL TEST TO USE? PARAMETRIC OR NONPARAMETRIC

Example:
- Sample of critically ill patients
 - Length of stay
- 20 females
 - Mean = 60
 - Median = 31.5
- 19 males
 - Mean = 30.9
 - Median = 30
EXAMINE RELATIONSHIPS

• **Correlation Statistics**
 - Exploratory studies
 - Examines relationship between variables
 - Direction of relationship
 - Doesn’t specify IV & DV

EXAMPLES
- Association between overtime hours worked and medication errors in RNs
- Relationship between social support and stress in elderly rural women
- Relationship between time on ventilator and LOS in ICU patients
CORRELATION COEFFICIENTS

- Direction of relationship

- Strength of relationship (-1 to +1)
 - $\geq .10 \rightarrow$ weak
 - $\geq .30 \rightarrow$ moderate
 - $\geq .50 \rightarrow$ strong

- Statistical significance
PEARSON’S CORRELATION COEFFICIENT (r)

- Parametric test
- Assumptions
 - Normal distribution / Interval or ratio
 - Related pairs / Absence of outliers
 - Linearity / Homoscedasticity
- Interval or ratio data level
- Reported as:
 - $r = .78$, $p < 0.001$
NONPARAMETRIC TESTS

- **Spearman Rho**
 - Skewed distribution
 - One variable- ordinal level
 - Reported as:
 - $r_s = .82, \ p = .042$

- **Kendall’s Tau**
 - Skewed distribution
 - One variable- ordinal level
 - Reported as:
 - $r_t = .82, \ p = .042$

- **Chi Square test**
 - One variable- nominal
 - No direction or association reported
 - Reported as:
 - $\chi^2 (1) = 5.00, \ p = .025$

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Gender</th>
<th>Assessment to Physician Contact Time</th>
<th>Assessment to Medication Administration</th>
<th>Pain Score Prior to Schedule II</th>
<th>Sleep Disturbances</th>
<th>Diminished Ability With ADLs</th>
<th>Nonpharmacological Modalities Used*</th>
<th>Lack of Participation in Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>−0.27*</td>
<td>0.01</td>
<td>−0.17</td>
<td>0.15</td>
<td>−0.09</td>
<td>0.15</td>
<td>0.08</td>
<td>0.24</td>
</tr>
<tr>
<td>Assessment to pain relief time</td>
<td>0.27*</td>
<td>−0.01</td>
<td>0.52**</td>
<td>0.02</td>
<td>0.18</td>
<td>0.17</td>
<td>0.06</td>
<td>−0.09</td>
</tr>
<tr>
<td>Pain score prior to schedule II</td>
<td>−0.34*</td>
<td>0.11</td>
<td>0.20</td>
<td>—</td>
<td>0.34*</td>
<td>0.26</td>
<td>−0.07</td>
<td>0.28*</td>
</tr>
<tr>
<td>Pain score after schedule II</td>
<td>−0.25</td>
<td>0.22</td>
<td>0.07</td>
<td>0.48**</td>
<td>0.15</td>
<td>0.11</td>
<td>−0.12</td>
<td>0.22</td>
</tr>
<tr>
<td>Lack of therapy participation</td>
<td>−0.38*</td>
<td>0.20</td>
<td>0.01</td>
<td>0.28*</td>
<td>0.31*</td>
<td>0.45**</td>
<td>0.03</td>
<td>—</td>
</tr>
<tr>
<td>Sleep disturbance</td>
<td>0.02</td>
<td>0.21</td>
<td>0.18</td>
<td>0.34*</td>
<td>—</td>
<td>0.70**</td>
<td>0.09</td>
<td>0.31*</td>
</tr>
<tr>
<td>Diminished appetite/weight loss</td>
<td>−0.24</td>
<td>0.37**</td>
<td>−0.21</td>
<td>0.14</td>
<td>0.07</td>
<td>0.07</td>
<td>−0.20</td>
<td>0.30</td>
</tr>
<tr>
<td>Resisting movement with care</td>
<td>−0.09</td>
<td>0.15</td>
<td>0.13</td>
<td>0.45**</td>
<td>0.67**</td>
<td>0.67**</td>
<td>−0.02</td>
<td>0.34*</td>
</tr>
<tr>
<td>Diminished psychological well-being</td>
<td>−0.01</td>
<td>0.17</td>
<td>0.11</td>
<td>0.33*</td>
<td>0.52**</td>
<td>0.44**</td>
<td>0.30</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Note: Schedule II = schedule II analgesic medications; ADLs = activities of daily living.
Nonpharmacological modalities that may have been used include massage, music therapy, pet therapy, social activities, repositioning, and communication and diversion techniques, including family and friend visitation.
*p < 0.05; **p < 0.01.
PREDICT RELATIONSHIPS

- Regression Analysis
 - Exploratory & Prediction studies
 - Quantifies a relationships among variables to predict future events
 - Estimates values for DV by known values of IV
 - Dependent variable (DV) – outcome variable
 - Independent variable (IV) – influencing variable
 - Makes inferences or predictions
 - Statistically significant correlations (≥ .50)
 - Measure strength of association
3 TYPES OF REGRESSION ANALYSIS

- **Linear regression**
 - Relationship between a single independent variable and a single interval- or ratio-level variable
 - Predicts the future value of dependent variable based on level of independent variable
 - Results report: R and R^2

- **Multiple regression**
 - Make prediction about how 2 or more independent variables affects the dependent variable
 - Reported as R^2

- **Logistic regression**
 - Used when dependent variable is categorical (nominal or ordinal with 2 categories)
 - Generates an Odds Ratio (OR)
EXAMPLES

Investigate the relationship between gestational age at birth (weeks) & birth weight (lbs.)

• Simple linear regression
 • Significant relationship between gestation and birth weight ($r = .706, p < 0.001$).
 • Slope coefficient for gestation was 0.355
 • Weight of baby increases by 0.355 lbs. for each extra week of gestation.

Investigate the effect of age (years) and height (inches) on weight

• Multiple regression
 • Significant relationship between age and weight ($r = .476, p = .001$); height and weight ($r = .672, p = .001$)
 • Control for height, every year adds 1.71 lbs.
 • Control for age – every inch adds 10.37 lbs.
EXAMPLE: LOGISTIC REGRESSION

- **Purpose:** Identify factors that can be related to the occurrence of gestational arterial hypertension.

- **Dependent variable**
 - Momentary HTN – yes
 - Momentary HTN – no

- **Independent variables**
 - Anxiety
 - Depression
 - Obesity
 - Demographic variables
 - Age
 - Race
 - Education

<table>
<thead>
<tr>
<th></th>
<th>OR</th>
<th>CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-white</td>
<td>8.18</td>
<td>1.39-48.10</td>
<td>0.020</td>
</tr>
<tr>
<td>Depression</td>
<td>No</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>8.69</td>
<td>1.19-63.42</td>
<td>0.033</td>
</tr>
<tr>
<td>Obesity</td>
<td>No</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>6.45</td>
<td>1.40-29.61</td>
<td>0.016</td>
</tr>
<tr>
<td>Anxiety</td>
<td>No</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>7.77</td>
<td>1.19-50.45</td>
<td>0.032</td>
</tr>
</tbody>
</table>

EXAMINE DIFFERENCES

- **Experimental Designs**
 - Effect of IV on DV
 - 1 or more variables
 - 1 or more groups
 - Comparing results (means)
 - Between subjects
 - Within subjects

- **Statistical test to use depends on**
 - # of groups
 - Level of measurement
 - Type of sample
 - Independent samples
 - Dependent samples
PARAMETRIC TEST: Differences between 2 means

- **Students \(t \)-test**
 - One-sample \(t \)-test
 - Independent Samples \(t \)-test
 - Dependent Samples \(t \)-test

- **One-sample \(t \)-test**
 - Interval or Ratio data
 - Compare mean to known value
 - Results reported as
 \[t (99) = 2.224, p = 0.028 \]
 - One-tailed or two-tailed test
PARAMETRIC TEST: Difference between 2 means

<table>
<thead>
<tr>
<th>INDEPENDENT SAMPLES</th>
<th>DEPENDENT SAMPLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-test</td>
<td>t–test</td>
</tr>
<tr>
<td>• Interval or Ratio data</td>
<td>• Paired t–test</td>
</tr>
<tr>
<td>• Independent samples</td>
<td>• Interval or Ratio data</td>
</tr>
<tr>
<td>• Results reported as</td>
<td>• Dependent samples</td>
</tr>
<tr>
<td>$t (18) = 2.86, p = 0.011$</td>
<td>• Results reported as</td>
</tr>
<tr>
<td></td>
<td>$t (15) = 4.00, p = 0.001$</td>
</tr>
</tbody>
</table>
70 patients with leukemia
• Experimental group \((n=35)\)
 • 2 follow-up phone calls (IV)
• Control group \((n=35)\)
 • Routine care
 • Self-care (DV)

70 patients with hypertension
• Stress reduction classes
• SBP (pre & post)

<table>
<thead>
<tr>
<th></th>
<th>Experimental Group ((n=35))</th>
<th>Control Group ((n=35))</th>
<th>(t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-care</td>
<td>2.67 (\pm) 0.036</td>
<td>1.78 (\pm) 0.38</td>
<td>10.347*</td>
</tr>
</tbody>
</table>

* \(p<.001\)

<table>
<thead>
<tr>
<th></th>
<th>Pre-class</th>
<th>Post-class</th>
<th>(t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBP</td>
<td>178.92 (\pm) 24.6</td>
<td>131.47 (\pm) 6.38</td>
<td>4.467*</td>
</tr>
</tbody>
</table>

* \(p<.001\)
NONPARAMETRIC TESTS: Differences between 2 medians

MANN-WHITNEY U-TEST
- Looks at differences in distribution of a variable
- Assumptions
 - Random samples
 - Independent samples
 - Level of measurement: Ordinal +
- Results of test are reported as
 - $U = 67.5, p = .034$
 - Wilcoxon Rank-Sum test
 - $W_s = 109.50, p = .008$

WILCOXON RANKED-SIGN TEST
- Looks at differences in distribution of a variable
- Assumptions
 - Random samples
 - Dependent samples
 - Level of measurement: Ordinal +
- Results of test are reported as
 - $(Mdn = 21.00), Z = -1.807, p = 0.071, r = -.84$
 - Wilcoxon Matched-Pairs test
CHI-SQUARE (χ^2) STATISTIC

- Looks at differences in distribution of frequencies
- Level of Measurement: nominal or ordinal
- Independent groups
- Observed frequencies vs. Expected frequencies
- Results reported as
 - $\chi^2 (2, N = 218) = 14.14, p < 0.01$

NONPARAMETRIC TESTS:
Differences between 2 frequencies

<table>
<thead>
<tr>
<th></th>
<th>Do not use Antihistamines</th>
<th>Use Antihistamines</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 30</td>
<td>105</td>
<td>32</td>
<td>137</td>
</tr>
<tr>
<td>> 30</td>
<td>72</td>
<td>9</td>
<td>81</td>
</tr>
<tr>
<td>Total</td>
<td>177</td>
<td>41</td>
<td>218</td>
</tr>
</tbody>
</table>
ANALYSIS OF VARIANCE (ANOVA)

- **Parametric Test**
 - Differences in means between >2 Groups

- **Post hoc tests**
 - Bonferroni
 - Tukey’s
 - Scheffé’s

- **Reported as an F ratio**
 - $F(59, 56) = 7.77, p = .042$

Types of ANOVAs

- One-way ANOVA
- ANCOVA
- Two-way ANOVA
- N-way (Factorial) ANOVA
- RM-ANOVA
- MANOVA
ONE-WAY ANOVA

- 3 or more Independent Groups
 - Comparing 3 or more means
- 1 independent variable (1 factor)
- 1 dependent variable
- Results reported as
 - $F(2, 27) = 4.98, p = 0.01$

Assumptions
- Normal distribution
- DV at least Interval level
- Variances in groups are same
- Independent samples
Smokers

• IV- methods to quit smoking
• DV- # cigarettes/day

• Ho: There is no significant difference in number of cigarettes per day between smokers who had counseling, used a nicotine patch, or used Chantix.
• Ha: There is a significant difference in number of cigarettes per day between smokers who had counseling, used a nicotine patch, or used Chantix.

<table>
<thead>
<tr>
<th>Group A</th>
<th>Group B</th>
<th>Group C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counseling</td>
<td>Nicotine Patch</td>
<td>Chantix</td>
</tr>
<tr>
<td>16.6</td>
<td>19.2</td>
<td>34.0</td>
</tr>
<tr>
<td>n = 8</td>
<td>n = 10</td>
<td>n = 9</td>
</tr>
</tbody>
</table>

\[F (2, 27) = 4.98, p = 0.01 \]
ANCOVA (Analysis of Covariance)

- 3 or more Groups
 - Comparing 3 or more means

- 1 Independent Variable (factors)
- 1 Dependent Variable

- Adjusts scores on dependent variable
 - Removes effect of confounding variables (covariates)

- Assumptions
 - Normal distribution
 - DV at least Interval level
 - Variances in groups are same
 - Independent samples
 - Independence between covariate & IV
 - Relationship between covariate & DV stays the same
EXERCISE STUDY

• IV- Exercise
 • No exercise
 • Exercise 1x / week
 • Exercise 3x’s / week
 • Exercise 5x’s / week

• DV- Health Problem Index
 • Confounding variable: weight

EXAMPLE using ANCOVA
EXAMPLE USING TWO-WAY ANOVA

• Smokers study
 • IV #1- Methods to quit smoking (Factor A)
 • IV #2- Gender (Factor B)
 • DV- # cigarettes/day

H⁰¹: There is no significant difference in the mean # cigarettes/day among participants getting counselling or the nicotine patch.
H⁰²: There is no significant difference in the mean # cigarettes/day among male or female participants.
H⁰³: There is no significant interaction effect between gender and method used.

<table>
<thead>
<tr>
<th>Factor B- Gender</th>
<th>Factor A- Treatment</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Counseling (1)</td>
<td>Patch (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female (1)</td>
<td>X₀₁b₁ = 22.0</td>
<td>X₀₂b₁ = 20.0</td>
<td>Xᵦ₁ = 21.0 (female)</td>
<td></td>
</tr>
<tr>
<td>Male (2)</td>
<td>X₀₂b₂ = 16.0</td>
<td>X₀₂b₂ = 30.0</td>
<td>Xᵦ₂ = 21.0 (male)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X₀₁ = 21.0 (treatment)</td>
<td>X₀₂ = 21.0 (treatment)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RM-ANOVA (Repeated Measures ANOVA)

- **Dependent Sample**
 - Comparing 3 or more means
 - DV measured at different times
 - >2 IV to same group

- 1 or more **Independent Variables**
- 1 or more **Dependent Variable**

- **Results reported as**
 - $F(1, 108) = 3.93, p < 0.001$

Assumptions
- Normal distribution
- DV at least Interval level
- Variances in groups are same
- Sphericity
RM-ANOVA EXAMPLES

Example 1

<table>
<thead>
<tr>
<th></th>
<th>n = 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>m(SD)</td>
</tr>
<tr>
<td></td>
<td>16.6 (2.78)</td>
</tr>
<tr>
<td>Time 1</td>
<td>m(SD)</td>
</tr>
<tr>
<td></td>
<td>19.2 (1.51)</td>
</tr>
<tr>
<td>Time 2</td>
<td>m(SD)</td>
</tr>
<tr>
<td></td>
<td>34.0 (2.13)</td>
</tr>
</tbody>
</table>

DV: Quality of sleep

Example 2

<table>
<thead>
<tr>
<th></th>
<th>n = 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video Game</td>
<td>m(SD)</td>
</tr>
<tr>
<td>(Weeks 1-4)</td>
<td>9.4 (1.96)</td>
</tr>
<tr>
<td>Music</td>
<td>m(SD)</td>
</tr>
<tr>
<td>(Weeks 5-8)</td>
<td>16.9 (3.05)</td>
</tr>
<tr>
<td>Television</td>
<td>m(SD)</td>
</tr>
<tr>
<td>(Weeks 9-12)</td>
<td>13.8 (2.63)</td>
</tr>
</tbody>
</table>

DV: Quality of sleep

Example 3

<table>
<thead>
<tr>
<th></th>
<th>n = 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video Game</td>
<td>m(SD)</td>
</tr>
<tr>
<td>(Weeks 1-4)</td>
<td>Male: 12.4 (2.16)</td>
</tr>
<tr>
<td></td>
<td>Female: 14.9 (3.21)</td>
</tr>
<tr>
<td>Music</td>
<td>m(SD)</td>
</tr>
<tr>
<td>(Weeks 5-8)</td>
<td>Male: 16.9 (3.05)</td>
</tr>
<tr>
<td></td>
<td>Female: 18.3 (2.78)</td>
</tr>
<tr>
<td>Television</td>
<td>m(SD)</td>
</tr>
<tr>
<td>(Weeks 9-12)</td>
<td>Male: 13.8 (2.63)</td>
</tr>
<tr>
<td></td>
<td>Female: 15.5 (1.45)</td>
</tr>
</tbody>
</table>

DV: Quality of sleep
NONPARAMETRIC TESTS: Kruskal-Wallis

- **Compareds medians**
 - Any assumption of ANOVA testing is violated
 - Small sample size

- **Assumptions**
 - Random samples
 - Independent samples
 - Level of measurement: Ordinal, Interval, or Ratio

- Only tells that measurements differ
 - Mann-Whitney test provides which differ significantly
NONPARAMETRIC TESTS: Friedman’s ANOVA

- Nonparametric equivalent for **RM-ANOVA**
 - Uses ranked data
 - Any assumption of ANOVA testing is violated
 - Small sample size
- Assumptions
 - Independent measurements
 - Level of measurement: Ordinal, Interval, or Ratio
- Only tells that measurements differ
 - Wilcoxon Signed-rank test provides which differ significantly
Statistical Significance

- Results unlikely to caused by chance

- Dependent upon Power and # of subjects in a study

- The larger the sample the greater the power & probability of detecting significant results between variables

Clinical Significance

- Magnitude of risk reduction

- Precision of the treatment effect
 - Effect Size (ES)
 - Cohen’s d calculation
 - Confidence Interval (CI)
EFFECT SIZE CALCULATION

COHEN’S \(d \)

\[
\frac{\text{mean}^1 - \text{mean}^2}{\text{SD}^1 + \text{SD}^2/2}
\]

- **Small ES** \(\geq .20 \)
- **Medium ES** \(\geq .50 \)
- **Large ES** \(\geq .80 \)
EXAMPLE OF CLINICAL SIGNIFICANCE

- Research Question: “In teens, what is the effect of imagery on anxiety level?”
- 20 teens in Control Group, 20 teens in Experimental Group
 - Control group $\mu = 40$ (25)
 - Experimental group $\mu = 50$ (15)
 - $p = 0.15$
- Cohen’s d $\frac{50-40}{\sqrt{25+15}/2}$ $\rightarrow \frac{10}{20}$ $\rightarrow 0.5$ or Medium Effect size