Drugs of Abuse in Oklahoma: Trends and Testing Technologies

Robert Weston

June 17, 2017

Agenda

Drug prevalence in the State of Oklahoma throughout 2016

Drug screening technologies

Efficacy of screening vs. confirmatory testing

Case studies
Seized drugs in Oklahoma - 2016

Drugs Submitted to OSBI

Throughout 2016

<table>
<thead>
<tr>
<th>I illicit (weight)</th>
<th></th>
<th>Prescription (tablets)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marijuana</td>
<td>2722.0 lbs.</td>
<td>Alprazolam (Xanax) 14,939</td>
</tr>
<tr>
<td>Methamphetamine</td>
<td>268.0 lbs.</td>
<td>Hydrocodone (Lortab, Norco) 6,979</td>
</tr>
<tr>
<td>Cocaine</td>
<td>25.7 lbs.</td>
<td>Oxycodone (Percocet) 4,434</td>
</tr>
<tr>
<td>Heroin</td>
<td>19.4 lbs.</td>
<td>Clonazepam (Klonopin) 2,887</td>
</tr>
<tr>
<td>PCP</td>
<td>100 g.</td>
<td>Diazepam (Valium) 2,771</td>
</tr>
</tbody>
</table>
Opioid-Prescribing Rates by Specialty

Benefits of drug testing

Drug testing provides information that:

- detect patient use of illicit substances
- can increase safety of prescribing medications
- identify pregnant women who are misusing drugs
- monitor substance abstinence
- can affect clinical decisions; influencing other medical decisions

Benefits of drug testing

Drug testing provides information that:

- detect patient use of illicit substances
- can increase safety of prescribing medications
- identify pregnant women who are misusing drugs
- monitor substance abstinence
- can affect clinical decisions; influencing other medical decisions

Screening technology – Immunoassay

Several different formats

- Cup
- Dipstick
- Cartridge
- Instrumental
 - CEDIA
 - KIMS
 - DRI
 - ELISA
 - QMA
Know your tests
 Screening Cut-off

Federally mandated Department of Transportation (DOT) guidelines for drug testing of safety-sensitive transportation employees have established the following cutoffs for abused drugs and metabolites:

<table>
<thead>
<tr>
<th>Initial Test Analyte</th>
<th>Initial Test Cutoff Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marijuana metabolites</td>
<td>50 ng/mL</td>
</tr>
<tr>
<td>Cocaine metabolites</td>
<td>150 ng/mL</td>
</tr>
<tr>
<td>Opiate metabolites</td>
<td></td>
</tr>
<tr>
<td>Codeine/Morphine</td>
<td>2000 ng/mL</td>
</tr>
<tr>
<td>6-Acetylmorphine</td>
<td>10 ng/mL</td>
</tr>
<tr>
<td>Phencyclidine</td>
<td>25 ng/mL</td>
</tr>
<tr>
<td>Amphetamines</td>
<td></td>
</tr>
<tr>
<td>AMP/MAMP</td>
<td>500 ng/mL</td>
</tr>
<tr>
<td>MDMA</td>
<td>500 ng/mL</td>
</tr>
</tbody>
</table>

DOT Required Screen Concentrations vs Point of Care Product Inserts

Comparison of Screening Methods

<table>
<thead>
<tr>
<th>Drug</th>
<th>DOT</th>
<th>Cup 1</th>
<th>Cup 2</th>
<th>Cup 3</th>
<th>Cup 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cocaine</td>
<td>150</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>100</td>
</tr>
<tr>
<td>Opiates</td>
<td>2,000</td>
<td>2,000</td>
<td>2,000</td>
<td>2,000</td>
<td>100</td>
</tr>
<tr>
<td>6-AM</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PCP</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Amph</td>
<td>500</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
<td>300</td>
</tr>
<tr>
<td>MDMA</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>-</td>
<td>40</td>
</tr>
<tr>
<td>Marijuana</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

All concentration levels in ng/mL.
POC testing criticized for the high rate of false positives

A review article describes false positives in the following drug classes.

- Amphetamines: bupropion, chlorpromazine, dimethylamylamine, labetalol, metformin, ofloxacin, promethazine, trazodone
- Benzodiazepines: sertraline, Efavirenz
- Cannabinoids: Efavirenz, ibuprofen, naproxen, niflumic acid
- Buprenorphine: amisulpride, sulpiride, codeine, morphine, dihydrocodeine, tramadol
- Methadone: diphenhydramine, creatinine, tapentadol, verapamil
- Morphine: levofloxacine, enoxacine
- Heroin: pentazocine

Product Inserts

Non-cross reactive compounds

- Not reactive at 100µg/mL

T-Cup product insert
Product Inserts

More than just the instructions

<table>
<thead>
<tr>
<th>Drug concentration</th>
<th>THC</th>
<th>MTD</th>
<th>mAMP</th>
<th>MDMA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>0% Cut-off</td>
<td>30</td>
<td>30</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>-50% Cut-off</td>
<td>30</td>
<td>30</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>-25% Cut-off</td>
<td>30</td>
<td>12</td>
<td>18</td>
<td>24</td>
</tr>
<tr>
<td>Cut-off</td>
<td>30</td>
<td>1</td>
<td>29</td>
<td>21</td>
</tr>
<tr>
<td>-25% Cut-off</td>
<td>30</td>
<td>1</td>
<td>29</td>
<td>2</td>
</tr>
<tr>
<td>+50% Cut-off</td>
<td>30</td>
<td>0</td>
<td>30</td>
<td>0</td>
</tr>
</tbody>
</table>

Product Inserts

Cross reactivity

The following Benzodiazepine-related substances yield positive results for Benzodiazepines:

- Oxazepam: 300
- Alprazolam: 400
- Bromazepam: 2,000
- Chlordiazepoxide: 8,000
- Clorazepate: 400
- Clonazepam: 5,000
- Diazepam: 2,000
- Estazolam: 20,000
- Flunitrazepam: 1,000
- Lorazepam: 4,000
Product Inserts

Cross reactivity

The following Opiates/Morphine-related substances yield a positive result for Opiates/Morphine at 2000 ng/ml cut-off level:

- Morphine 3000 ng/ml
- Morphine Sulfate Pentahydrate 2000 ng/ml
- Morphine-3-β-D Glucuronide 2000 ng/ml
- Codeine 2000 ng/ml
- Heron 2000 ng/ml
- Levorphanol 1000 ng/ml
- Ranitidine 100,000 ng/ml
- 6-Acetylmorphine 50 ng/ml

The following Oxycodone-related substances yield positive results for Oxycodone at 100 ng/ml cut-off level:

- Oxycodone-2HCl 100 ng/ml
- Codeine 700 ng/ml
- Hydrocodone 500 ng/ml
- Hydromorphone 1,500 ng/ml
- Morphine-Sulfate 7,000 ng/ml
- Morphine-3,4-Dihydroxyacetyl 40,000 ng/ml
- Norcodeine 40,000 ng/ml
- Oxymorphone 300 ng/ml

Evaluation – Screen vs. Confirmation
Comparative Evaluation of POC to LC/MS/MS

Opioids and Illicit Drugs

<table>
<thead>
<tr>
<th>Test</th>
<th>False Negative %</th>
<th>False Positive %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opioids</td>
<td>7.8</td>
<td>6.9</td>
</tr>
<tr>
<td>Oxycodone</td>
<td>24.6</td>
<td>7.7</td>
</tr>
<tr>
<td>Marijuana</td>
<td>9.1</td>
<td>2.0</td>
</tr>
<tr>
<td>Methamphetamine</td>
<td>60*</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Benzodiazepine assay compared to LC/MS/MS

Point of care cup

- Study evaluated benzodiazepine POC results against LC/MS/MS confirmation.
 - 99 false negatives out of 410 samples (24.1%) were found
 - A false positive rate of 10.5% (10 of 95 results)
 - The total efficacy of the test was 78.4%.
Difficulties in detection of benzodiazepines

Laboratory immunoassay instrument

- False negative rates for three different immunoassay technologies were unacceptably high
 - HS-CEDIA - 22%
 - KIMS - 45%
 - CEDIA - 53%
- Highest sensitivity - alprazolam (Xanax)
- Lowest sensitivity – lorazepam (Ativan) and clonazepam (Klonopin)
- There were no false positives were found.
Interpretation

- Cocaine positive case study
- Amphetamine & methamphetamine
- Methylphenidate
- Opiates positive

Tricking the Test

- Medication substitution
- Pill shaving

Reference Lab Confirmatory Testing Cutoff

Comparison of Confirmation

<table>
<thead>
<tr>
<th>Drug</th>
<th>DOT Confirm</th>
<th>Lab 1</th>
<th>Lab 2</th>
<th>Lab 3</th>
<th>Lab 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marijuana</td>
<td>15</td>
<td>10</td>
<td>2</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Cocaine</td>
<td>100</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Opiates</td>
<td>2,000</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>6-AM</td>
<td>10</td>
<td>---</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>PCP</td>
<td>25</td>
<td>10</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Amphetamines</td>
<td>250</td>
<td>100</td>
<td>50</td>
<td>125</td>
<td>250</td>
</tr>
<tr>
<td>MDMA</td>
<td>250</td>
<td>100</td>
<td>50</td>
<td>---</td>
<td>200</td>
</tr>
</tbody>
</table>
Sources

1. Substance Abuse Testing in Primary Care Technical Assistance Publication (TAP) 32. HHS Publication Number (SMA) 12-4668. Rockville, MD; Substance Abuse and Mental Health Services Administration, 2012.

2. 49 CFR Part 40 Section 40.87

4. KIMS, CEDIA and HS-CEDIA Immunoassays are Inadequately Sensitive for Detection of Benzodiazepines in Urine from Patients Treated for Chronic Pain, Pain Physician 2014; 17:359-366.
