FROM RISK TO RESULTS: PERIODONTAL INSTRUMENTATION FOR THE ADVANCED PRACTITIONER

COURSE DESCRIPTION

This course is based on current scientific literature providing the clinician with evidence based tools and strategies which include the use of periodontal risk assessment protocols, salivary diagnostics, incorporation of the dental exam and progressive treatment planning. Advantages of ultrasonic instrumentation will be examined as demonstrated in the current research for obtaining successful clinical outcomes while providing comprehensive patient care.

COURSE OBJECTIVES

Upon completion of this course, participants will be able to:

- Develop an understanding of the Evidence-based Decision Making (EBDM) process while providing a mechanism for staying current in practice by addressing gaps in knowledge so that the clinician can provide the best care possible.

- Understand the unique relationship between oral and systemic conditions utilizing the patient’s risk factors including current medical status, dental & periodontal considerations, and total patient history.

- Discuss the use salivary diagnostics for the presence of diabetes, C-reactive protein and other biomarkers which play a role in periodontal disease.

- Develop an understanding of the role ultrasonic instrumentation plays in the delivery of successful preventive and therapeutic debridement through an examination of the current evidence based research.

1. Evidence Based Approach

Evidence Based Approach: A decision making process which integrates

- Best available scientific evidence
- Clinician’s experience & expertise
- Patient’s treatment needs and preferences
 - Make best decision about appropriate care
2. Accessing, Utilizing and Interpreting the Research Results

Evidence Based Research
- Define the levels of evidence
 - Primary vs. Secondary Research
 - Clinical Trials
 - Systematic Reviews, Meta-Analysis
 - Interpreting Research Results
 - Questions to ask
 - Who published it
 - Where did funding come from
 - Study structure
 - Clinical vs Statistical Significance
 - P value
 - Clinical application
- Where to Find the Research
 - Web/Mobile Apps
 - EBSCO HOST
 - Pub Med
 - Medline Plus

3. The Assessment Process

Traditional Clinical Assessments
- Medical history
- Periodontal charting
 - Dental Rat™ & Florida Probe®
- Radiographs

Risk Based Approach
- Recognizes patients at higher risk for periodontal disease
 - Modifiable
 - Smoking, oral hygiene, diet, etc
 - Non-modifiable
 - Genetics, age, history of perio disease
 - Patients with systemic conditions
 - Significantly affected by oral inflammation
 - Diabetes
 - CVD
4. Comprehensive Periodontal Therapy

Research published 1982-1991 initiated:
- Instrumentation paradigm shift from definitive root planing to periodontal debridement
- Research showed that:
 - Endotoxins are loosely adherent to root surface
 - Extensive cementum removal is unnecessary
 - Cell-activating proteins which stimulate attachment are found within cementum

Periodontal Debridement
- Creates a biologically-acceptable root surface that favors healing
- Objective of instrumentation:
Disrupt/remove biofilm, calculus, endotoxins from root surface & subgingival environment (vs. removing part of root surface itself)

- Success of instrumentation is defined by:
 - Positive tissue response (vs. smoothness of root surface)

Debridement Therapy

- Includes:
 - Scaling- hard deposit removal
 - Root Debridement- biofilm and endotoxin removal
- Preventive intervention
 - Before periodontal destruction initiates
- Therapeutic intervention
 - Occurs after initiation of periodontal destruction
 - Definitive or complete treatment
 - Condition resolves
 - Preparatory or initial therapy
 - Prior to surgery

Successful Debridement

- Criteria for thorough instrumentation:
 - Ability to contact root surface
 - Efficacy of deposit removal
 - Effect on root surface
 - Maintain patient comfort and clinician ergonomics
- Successful debridement can be accomplished
 - Manual or ultrasonic instrumentation
 - Ultrasonic instrumentation is beneficial in meeting criteria for debridement
5. Power Scaling Technology

<table>
<thead>
<tr>
<th>Mechanisms of Action:</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical</td>
<td>• Rapid movement of tip mechanically removes deposits</td>
</tr>
</tbody>
</table>
| **Irrigation** | • Lavage created by water flow
• Facilitates removal of biofilm & endotoxins |
| **Cavitation** | • Implosion of minute bubbles releases energy
• Disrupts cell wall of bacteria |
| **Acoustic Microstreaming** | • Forceful flow of cavitating fluid
• Enhances debridement of root surface beyond area contacted by tip |
| **Frequency** | • Number of cycles (one complete stroke path) per second
• Frequency correlates to the active tip area
• *Example:* 30k = 4.2mm of active tip area |
| **Power** | • Length of the stroke path
• Power increases- the stroke becomes longer
• Increases amplitude
• Lowest **effective** power should be used |

Ultrasonic Technology

- **Piezoelectric Technology**
 - • Electrical energy activates piezo-ceramic disks in handpiece
 - • 25,000 to 42,000 cps
 - • Linear movement
 - • Only lateral sides active

- **Magnetostrictive Technology**
 - • Electrical energy is applied to metal stack
 - • 25,000 to 30,000 cps
 - • Elliptical movement
 - • All sides are active
| Sonic Technology | • Compressed air runs handpiece to activate tip
| | • 6000 to 16,000 cps
| | • Limited power options
| | • Circular movement
| | • All sides are active |
6. Ultrasonic Instrumentation Guidelines

<table>
<thead>
<tr>
<th></th>
<th>Standard Diameter</th>
<th>Slim Diameter</th>
<th>Perio Specialty Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power – Low to High</td>
<td>Single bend (#10)</td>
<td>Straight</td>
<td>Furcation</td>
</tr>
<tr>
<td></td>
<td>• Gross removal of mod-heavy calculus & stain</td>
<td>• Light calculus and/or biofilm debridement</td>
<td>• Furcation access</td>
</tr>
<tr>
<td></td>
<td>• Supra/Subgingival use</td>
<td>• Pockets less than 4mm</td>
<td>• Power – Low to Medium</td>
</tr>
<tr>
<td></td>
<td>Double bend (#100)</td>
<td>Curved</td>
<td>Implant (SofTip™)</td>
</tr>
<tr>
<td></td>
<td>• Gross removal of mod-heavy calculus & stain</td>
<td>• Light calculus and/or biofilm debridement</td>
<td>• Implant debridement</td>
</tr>
<tr>
<td></td>
<td>• Supra/Subgingival use</td>
<td>• Pockets greater than 4mm</td>
<td>• Power - Low</td>
</tr>
<tr>
<td></td>
<td>UltraSlim</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 47% thinner than Slimline straight</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Provides access</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Tight tissue</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Interproximal surfaces</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Misaligned teeth</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Usable at all power levels</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Triple bend (#1000)</td>
<td>Specialty Inserts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Gross removal of moderate to heavy tenacious calculus & stain</td>
<td>• Diamond coat – removal of tenacious calculus and soft tissue</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Improves access to line angles and interproximal areas</td>
<td>• In surgical treatment settings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Supragingival use only</td>
<td>• For surgical use only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Beavertail (#3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Heavy supragingival calculus & stain</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clinical Application

- Subgingival technique
- Positioned like a probe
| “Vertical Adaptation” | - Facilitates access of active area to depth of pocket
| | - Predominantly horizontal strokes on buccal/lingual surfaces
| | - Oblique strokes on interproximal surfaces
| Contact area/supragingival technique “Oblique Adaptation” | - Positioned like a hand instrument
| | - Predominantly oblique strokes
| | - Vertical strokes thru contact area
| Calculus removal assessment | - Assess with
| | - Probe
| | - Explorer
| | - Inactivated tip
| Ultrasonic lavage/rinse | - Water
| | - Chlorhexidine
| | - Povidone-iodine
| | - Other

- Deplaquing
 - Instrumentation in healthy sulci
 - Biofilm removal
 - Less traumatic
 - Perio maintenance
 - Biofilm removal
 - Ultra-Thin insert
- Lasers in soft tissue management
 - Uses and contraindications
 - Disinfection
 - Tissue modification
- Types of lasers
 - Diode
- Pain control
 - Perceived pain
 - Non-injectable options
- Medical and Dental considerations
 - Medical
 - Respiratory problems
 - Swallowing difficulties
 - Transmissible diseases
 - Pacemaker considerations
 - Dental
 - Exposed dentin
 - Demineralization
 - Implants
- Ergonomic considerations
 - Cord and insert
 - Grasp
 - Research evaluated
 - Cord control/management
 - Water/Fluid control
 - Suctioning options & techniques
 - Isolite/Isodry
 - Mr. Thirsty
 - Small or ½ length HVE
 - Blue Boa

7. http://www.adha.org/timeline

American Academy of Periodontology Statement on Sonic and Ultrasonic scalers in Periodontics. 2000

Burke FJT et al. Br Dent. J.

Centers for Disease Control and Prevention. Guidelines for Infection Control in Dental Health-Care Settings – 2003. MMWR 2003; 52(No. RR-17):[inclusive page numbers].

Dufou Lr, HS Bissell - Periodontal Attachment Loss Induced by Mechanical Subgingival Instrumentation in Shallow Sulci The Journal of Dental Hygiene Volume 76 Issue III Summer 2002

Fundamentals of Periodontal Instrumentation and Advanced Root Instrumentation - 7th Edition by Jill S. Nield-Gehrig

Giannobile, W. V. JADA 2012;143:suppl 10:65-115

Gorman, Park and Dell, Time Magazine, Feb 2004

Hawn, CC. et al A laboratory study to determine the effects of universal and rotating ultrasonic inserts on wrist movement and scaling time efficiency of dental hygienists Int J Dent Hygiene 4, 2006; 15–23

8. Websites & Mobile Sites Referenced

ADA-Evidence Based Data:
www.ebd.ada.org

Progressive Treatment Planning:
www.ipadrhd.com

Salivary diagnostics:
www.oraldna.com

Pacemaker References

https://professional.sjm.com/~media/pro/resources/emi/med-dental/ll-dental-equipment-042009.ashx?la=en

Research:
www.nlm.nih.gov/medlineplus

Apps:
Ebco Host App
Bone Box App

Dentsply Sirona, Inc. is an ADA/CERP recognized provider. ADA CERP is a service of the American Dental Association to assist dental professionals in identifying quality providers of continuing dental education. ADA CERP does not approve or endorse individual courses or instructors, nor does it imply acceptance of credit hours by boards of dentistry.